1 5 5

: ..Circular Motion

  1. #1

    Jul 2011
    -
    936

    ..Circular Motion


    Figure 1: Vector relationships for uniform circular motion; vector Ω representing the rotation is normal to the plane of the orbit.


    : -
    : .

    ()
    () : = ____

    ( ) ( ) .

    (
    : . ( )

    :

    () 45o 90o 180o ....
    3 ʡ ɡ 0,4
    ( - )

     (3,14)

    (): .

     =
     = = 2
    360 o = 2  180 o = 

    :
    ω = / / /

    ( ) (α
    :
    α = / 2 / 2 / 2


    : = ω
    (ω /


    (): .
    (): .
    () =
    ω = 2 ω =



    0 ( ) ω0
    ( ) ω
    () α
    () 
    = 0 + ω = ω. + α
    = 0 + 2
     = ω. + α 2

    2 = 0 2 + 2 ω2 = ω.2 + 2 α 
    =  = ω
    =
    ω =


    ()
    : . .
    = (2 / )
    ( ∆ - )

    ()
    :
    1) .
    2) .
    =
    = ( = 2 / )
    .
    .


    :
    ..
    : .
    ǡ .
    : .
    .
    "" :
    = μ
    :
    . ݡ .
    ( )

    "" "":
     = (  = 2 / )
    "" : = 

  2. #2

    Jul 2011
    -
    936

    : ..Circular Motion



    Figure 2: Polar coordinates for circular trajectory. On the left is a unit circle showing the changes and in the unit vectors and for a small increment dθ in angle θ.

    :
    .
    :
    = G ____

    1 2 G 6,67 10-11 .2 / 2

    :
    = G ____

    ֡ ѡ

    (): ""
    =


    ( )
    : = 
    = 

    =  

    : = =

    : =

    ( )

    : = ______

    : + = ______




    : .
    ( ) . ( ).

    :
    1 2


  3. #3

    Jul 2011
    -
    716

    : ..Circular Motion


  4. #4

    Jul 2011
    -
    15,678

    : ..Circular Motion









  5. #5

    Jul 2012
    5,302

    : ..Circular Motion





: 1 (0 1 )