النتائج 1 إلى 3 من 3

الموضوع: π-Electron Functions

  1. #1
    عضو ذهبي الصورة الرمزية اسراء
    تاريخ التسجيل
    Aug 2011
    المشاركات
    1,442

    افتراضي π-Electron Functions

    π-Electron Functions

    An examination of the proton chemical shift chart (above) makes it clear that the inductive effect of substituents cannot account for all the differences in proton signals. In particular the low field resonance of hydrogens bonded to double bond or aromatic ring carbons is puzzling, as is the very low field signal from aldehyde hydrogens. The hydrogen atom of a terminal alkyne, in contrast, appears at a relatively higher field. All these anomalous cases seem to involve hydrogens bonded to pi-electron systems, and an explanation may be found in the way these pi-electrons interact with the applied magnetic field.
    Pi-electrons are more polarizable than are sigma-bond electrons, as addition reactions of electrophilic reagents to alkenes testify. Therefore, we should not be surprised to find that field induced pi-electron movement produces strong secondary fields that perturb nearby nuclei. The pi-electrons associated with a benzene ring provide a striking example of this phenomenon, as shown below. The electron cloud above and below the plane of the ring circulates in reaction to the external field so as to generate an opposing field at the center of the ring and a supporting field at the edge of the ring. This kind of spatial variation is called anisotropy, and it is common to nonspherical distributions of electrons, as are found in all the functions mentioned above. Regions in which the induced field supports or adds to the external field are said to be deshielded, because a slightly weaker external field will bring about resonance for nuclei in such areas. However, regions in which the induced field opposes the external field are termed shielded because an increase in the applied field is needed for resonance. Shielded regions are designated by a plus sign, and deshielded regions by a negative sign.
    The anisotropy of some important unsaturated functions will be displayed by clicking on the benzene diagram below. Note that the anisotropy about the triple bond nicely accounts for the relatively high field chemical shift of ethynyl hydrogens. The shielding & deshielding regions about the carbonyl group have been described in two ways, which alternate in the display.
    For additional examples of chemical shift variation near strongly anisotropic groups Click Here.
    Sigma bonding electrons also have a less pronounced, but observable, anisotropic influence on nearby nuclei. This is seen in the small deshielding shift that occurs in the series CH3–R, R–CH2–R, R3CH; as well as the deshielding of equatorial versus axial protons on a fixed cyclohexane ring.
    Solvent Effects

    Chloroform-d (CDCl3) is the most common solvent for nmr measurements, thanks to its good solubilizing character and relative unreactive nature ( except for 1º and 2º-amines). As noted earlier, other deuterium labeled compounds, such as deuterium oxide (D2O), benzene-d6 (C6D6), acetone-d6 (CD3COCD3) and DMSO-d6 (CD3SOCD3) are also available for use as nmr solvents. Because some of these solvents have π-electron functions and/or may serve as hydrogen bonding partners, the chemical shifts of different groups of protons may change depending on the solvent being used. The following table gives a few examples, obtained with dilute solutions at 300 MHz.
    Solvent
    Compound
    CDCl3 C6D6 CD3COCD3 CD3SOCD3 CD3C≡N D2O
    (CH3)3C–O–CH3
    C–CH3
    O–CH3
    1.19
    3.22
    1.07
    3.04
    1.13
    3.13
    1.11
    3.03
    1.14
    3.13
    1.21
    3.22
    (CH3)3C–O–H
    C–CH3
    O–H
    1.26
    1.65
    1.05
    1.55
    1.18
    3.10
    1.11
    4.19
    1.16
    2.18
    ---
    ---
    C6H5CH3
    CH3
    C6H5
    2.36
    7.15-7.20
    2.11
    7.00-7.10
    2.32
    7.10-7.20
    2.30
    7.10-7.15
    2.33
    7.15-7.30
    ---
    ---
    (CH3)2C=O 2.17 1.55 2.09 2.09 2.08 2.22
    For most of the above resonance signals and solvents the changes are minor, being on the order of ±0.1 ppm. However, two cases result in more extreme changes and these have provided useful applications in structure determination. First, spectra taken in benzene-d6 generally show small upfield shifts of most C–H signals, but in the case of acetone this shift is about five times larger than normal. Further study has shown that carbonyl groups form weak π–π collision complexes with benzene rings, that persist long enough to exert a significant shielding influence on nearby groups. In the case of substituted cyclohexanones, axial α-methyl groups are shifted upfield by 0.2 to 0.3 ppm; whereas equatorial methyls are slightly deshielded (shift downfield by about 0.05 ppm). These changes are all relative to the corresponding chloroform spectra.
    The second noteworthy change is seen in the spectrum of tert-butanol in DMSO, where the hydroxyl proton is shifted 2.5 ppm down-field from where it is found in dilute chloroform solution. This is due to strong hydrogen bonding of the alcohol O–H to the sulfoxide oxygen, which not only de-shields the hydroxyl proton, but secures it from very rapid exchange reactions that prevent the display of spin-spin splitting. Similar but weaker hydrogen bonds are formed to the carbonyl oxygen of acetone and the nitrogen of acetonitrile. A useful application of this phenomenon is described elsewhere in this text.

    عضو في نادي ماركا الأكاديمي


  2. #2
    مراقب عام الصورة الرمزية Eiman
    تاريخ التسجيل
    Jul 2011
    الدولة
    الاردن - ماركا
    المشاركات
    14,750

    افتراضي رد: π-Electron Functions

    مشكوووووورة اسراء
    من جد وجد ....... ومن سار على الدرب وصل

  3. #3
    عضو مميز الصورة الرمزية قمر بلحاج
    تاريخ التسجيل
    Jul 2012
    المشاركات
    5,302

    افتراضي رد: π-Electron Functions

    بارك الله بكم
    وجزاكم كل خير

    عضو في نادي ماركا الأكاديمي


معلومات الموضوع

الأعضاء الذين يشاهدون هذا الموضوع

الذين يشاهدون الموضوع الآن: 1 (0 من الأعضاء و 1 زائر)

المفضلات

ضوابط المشاركة

  • لا تستطيع إضافة مواضيع جديدة
  • لا تستطيع الرد على المواضيع
  • لا تستطيع إرفاق ملفات
  • لا تستطيع تعديل مشاركاتك
  •