النتائج 1 إلى 4 من 4

الموضوع: The Carbon Cycle What Goes Around Comes Around

  1. #1
    عضو مميز الصورة الرمزية مالك محمد
    تاريخ التسجيل
    Aug 2011
    المشاركات
    2,847

    افتراضي The Carbon Cycle What Goes Around Comes Around

    Carbon is the fourth most abundant بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى in the بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , and is absolutely essential to life on earth. In fact, carbon constitutes the very definition of life, as its presence or absence helps define whether a بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى is considered to be organic or inorganic. Every بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى on Earth needs carbon either for structure, بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , or, as in the case of humans, for both. Discounting water, you are about half carbon. Additionally, carbon is found in forms as diverse as the gas carbon dioxide (CO2), and in solids like بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى (CaCO3), wood, plastic, diamonds, and graphite.

    The movement of carbon, in its many forms, between the atmosphere, oceans, بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , and بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى is described by the carbon cycle (Figure 1). This cycle consists of several storage pools of carbon (black text) and the processes by which the various pools exchange carbon (purple arrows and numbers). If more carbon enters a pool than leaves it, that pool is considered a net carbon sink. If more carbon leaves a pool than enters it, that pool is considered net carbon source.
    ©NASA
    Figure 1: A cartoon of the global carbon cycle. Pools (in black) are gigatons (1Gt = 1x109 Tons) of carbon, and fluxes (in purple) are Gt carbon per year. Illustration courtesy NASA Earth Science Enterprise.
    The global carbon cycle, one of the major بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى cycles, can be divided into geological and biological components. The geological carbon cycle operates on a time scale of millions of years, whereas the biological carbon cycle operates on a time scale of days to thousands of years.
    The geological carbon cycle

    The geological component of the carbon cycle is where it interacts with the rock cycle in the processes of بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى and dissolution, precipitation of بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , burial and بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , and volcanism (see our بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى module for information). In the atmosphere, بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى forms by a reaction with atmospheric carbon dioxide (CO2) and water. As this weakly acidic water reaches the earth as rain, it reacts with minerals at the earth’s surface, slowly dissolving them into their component بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى through the process of chemical weathering. These component ions are carried in surface waters like streams and rivers eventually to the ocean, where they بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى out as minerals like calcite (CaCO3). Through continued deposition and burial, this calcite بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى forms the rock called بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى .
    This cycle continues as بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى pushes the seafloor under continental margins in the process of بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . As seafloor carbon is pushed deeper into the earth by tectonic بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , it بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى up, eventually melts, and can rise back up to the surface, where it is released as CO2 and returned to the atmosphere. This return to the atmosphere can occur violently through volcanic eruptions, or more gradually in seeps, vents, and CO2-rich hotsprings. Tectonic uplift can also expose previously buried بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . One example of this occurs in the Himalayas where some of the world’s highest peaks are formed of material that was once at the bottom of the ocean. بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , subduction, and volcanism بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى atmospheric carbon dioxide concentrations over time periods of hundreds of millions of years.
    The Biological carbon cycle

    Biology plays an important role in the movement of carbon between land, ocean, and atmosphere through the processes of بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى and بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . Virtually all multicellular life on Earth depends on the production of بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى from sunlight and carbon dioxide (photosynthesis) and the metabolic breakdown (respiration) of those sugars to produce the بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى needed for movement, growth, and reproduction. Plants take in carbon dioxide (CO2) from the atmosphere during photosynthesis, and release CO2 back into the atmosphere during respiration through the following chemical reactions:
    Respiration:
    C6H12O6 (organic matter) + 6O2 6CO2 + 6 H2O +
    energy

    Photosynthesis:
    energy (sunlight) + 6CO2 + H2O C6H12O6 + 6O2

    Through بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , green plants use solar بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى to turn atmospheric carbon dioxide into carbohydrates (sugars). Plants and animals use these carbohydrates (and other بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى derived from them) through a process called بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , the reverse of photosynthesis. Respiration releases the energy contained in بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى for use in بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى and changes carbohydrate “fuel” back into carbon dioxide, which is in turn released back to the atmosphere. The amount of carbon taken up by photosynthesis and released back to the atmosphere by respiration each year is about 1,000 times greater than the amount of carbon that moves through the geological cycle on an annual basis.
    On land, the major exchange of carbon with the atmosphere results from بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى and بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . During daytime in the growing season, leaves absorb sunlight and take up carbon dioxide from the atmosphere. At the same time plants, animals, and soil microbes consume the carbon in organic matter and return carbon dioxide to the atmosphere. Photosynthesis stops at night when the sun cannot provide the driving بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى for the reaction, though respiration continues. This kind of imbalance between these two processes is reflected in seasonal changes in the atmospheric CO2 concentrations. During winter in the northern hemisphere, photosynthesis ceases when many plants lose their leaves, but respiration continues. This condition leads to an increase in atmospheric CO2 concentrations during the northern hemisphere winter. With the onset of spring, however, photosynthesis resumes and atmospheric CO2 concentrations are reduced. This cycle is reflected in the monthly بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى (the بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى blue line) of atmospheric carbon dioxide concentrations shown in Figure 2.
    ©NASA
    Figure 2: The “Keeling curve,” a long-term record of atmospheric CO2 concentration measured at the Mauna Loa Observatory (Keeling et al.). Although the annual oscillations represent natural, seasonal variations, the long-term increase means that concentrations are higher than they have been in 400,000 years (see text and Figure 3). Graphic courtesy of NASA’s Earth Observatory.
    In the oceans, phytoplankton (microscopic marine plants that form the base of the marine food chain) use carbon to make shells of calcium carbonate (CaCO3 ). The shells settle to the bottom of the ocean when phytoplankton die and are buried in the بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . The shells of phytoplankton and other creatures can become compressed over time as they are buried and are often eventually transformed into بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . Additionally, under certain geological conditions, organic matter can be buried and over time form deposits of the carbon-containing fuels coal and oil. It is the non-calcium containing organic matter that is transformed into fossil fuel. Both limestone formation and fossil fuel formation are biologically controlled processes and represent long-term sinks for atmospheric CO2.
    Human Alteration of the Carbon Cycle

    Recently, scientists have studied both short- and long-term measurements of atmospheric CO2 levels. بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , an oceanographer at the Scripps Institute of Oceanography, is responsible for creating the longest continuous record of atmospheric CO2 concentrations, taken at the Mauna Loa observatory in Hawaii. His بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى (now widely known as the “Keeling curve,” shown in Figure 2) revealed that human activities are significantly altering the natural carbon cycle. Since the onset of the industrial revolution about 150 years ago, human activities such as the burning of fossil fuels and deforestation have accelerated, and both have contributed to a long-term rise in atmospheric CO2. Burning oil and coal releases carbon into the atmosphere far more rapidly than it is being removed, and this imbalance causes atmospheric carbon dioxide concentrations to increase. In addition, by clearing forests, we reduce the ability of بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى to remove CO2 from the atmosphere, also resulting in a net increase. Because of these human activities, atmospheric carbon dioxide concentrations are higher today than they have been over the last half-million years or longer.
    Because CO2 increases the atmosphere’s ability to hold بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , it has been called a “greenhouse gas.” Scientists believe that the increase in CO2 is already causing important changes in the global climate. Many attribute the observed 0.6 degree C increase in global average temperature over the past century mainly to increases in atmospheric CO2. Without substantive changes in global patterns of fossil fuel consumption and deforestation, warming trends are likely to continue. The best scientific estimate is that global بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى temperature will increase between 1.4 and 5.8 degrees C over the next century as a result of increases in atmospheric CO2 and other greenhouse gases. This kind of increase in global temperature would cause significant rise in average sea-level (0.09-0.88 meters), exposing low-lying coastal cities or cities located by tidal rivers such as New Orleans, Portland, Washington, and Philadelphia to increasingly frequent and severe floods. Glacial retreat and بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى range shifts are also likely to result from global warming, and it remains to be seen whether relatively immobile species such as trees can shift their ranges fast enough to keep pace with warming.
    Even without the changes in climate, however, increased concentrations of CO2 could have an important impact on patterns of plant growth worldwide. Because some بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى of plants respond more favorably to increases in CO2 than others, scientists believe we may see pronounced shifts in plant species as a result of increasing atmospheric CO2 concentrations, even without any change in temperature. For example, under elevated CO2 conditions, shrubs are thought to respond more favorably than certain grass species due to their slightly different photosynthetic pathway. Because of this competitive inequality, some scientists have hypothesized that grasslands will be invaded by CO2-responsive grass species or shrubby species as CO2 increases.
    Figure 3: CO2 over the past 140,000 years as seen in an ice core and in the modern Mauna Loa record. The red line represents predicted concentrations. Figure courtesy of : بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى geo103/CO2.Vostok.jpg
    In an attempt to understand whether recently observed changes in the global carbon cycle are a new phenomenon, or have instead occurred throughout geologic history, scientists have devoted considerable effort to developing methods for understanding Earth’s past atmosphere and climate. These techniques include analysis of gas bubbles trapped in ice, tree rings, and ocean and lake floor بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى for clues about past climates and atmospheres. Together, these techniques suggest that over the past 20 million years, the Earth’s climate has oscillated between relatively warm and relatively cold conditions called interglacial and بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى . During بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى , atmospheric CO2 concentrations were relatively high, and during glacial periods, CO2 concentrations were relatively low. We are currently in an interglacial warm period, and human activities are pushing CO2 concentrations higher than they have been for hundreds of thousands of years (Figure 3).
    Understanding and mitigating negative impacts of atmospheric CO2 enrichment constitute two of the most central challenges that environmental scientists and policy makers currently face. In order to address this issue, the scientific community has formed the بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى (IPCC), an international, interdisciplinary consortium comprised of thousands of climate experts collaborating to produce consensus reports on climate change science. Many nations have agreed to conditions specified by the Kyoto Protocol, a multilateral treaty aimed at averting the negative impacts associated with human-induced climate change. The United States, which is currently responsible for approximately one quarter of global CO2 emissions, has so far declined to participate in the Kyoto Protocol.

    عضو في نادي ماركا الأكاديمي


  2. #2
    مشرفة الاقسام الاكاديمية الصورة الرمزية تمارا احمد
    تاريخ التسجيل
    Jul 2011
    الدولة
    الاردن - ماركا
    المشاركات
    15,678

    افتراضي رد: The Carbon Cycle What Goes Around Comes Around

    شكرا ...
    بارك الله فيك


    بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى

    عضو في نادي ماركا الأكاديمي


  3. #3
    عضو مميز الصورة الرمزية علي سواقد
    تاريخ التسجيل
    Mar 2012
    المشاركات
    2,938

    افتراضي رد: The Carbon Cycle What Goes Around Comes Around

    شكرا لكم

    بعد التسجيل عليك الرد بكلمة شكرا وعمل refresh للصفحة لرؤية المحتوى في المشاركة الاولى

    عضو في نادي ماركا الأكاديمي


  4. #4
    مراقب عام الصورة الرمزية Eiman
    تاريخ التسجيل
    Jul 2011
    الدولة
    الاردن - ماركا
    المشاركات
    14,750

    افتراضي رد: The Carbon Cycle What Goes Around Comes Around

    شكرا


    من جد وجد ....... ومن سار على الدرب وصل

معلومات الموضوع

الأعضاء الذين يشاهدون هذا الموضوع

الذين يشاهدون الموضوع الآن: 1 (0 من الأعضاء و 1 زائر)

المفضلات

ضوابط المشاركة

  • لا تستطيع إضافة مواضيع جديدة
  • لا تستطيع الرد على المواضيع
  • لا تستطيع إرفاق ملفات
  • لا تستطيع تعديل مشاركاتك
  •